
Site Calibration
with PROJ and WKT2

source

https://en.wikipedia.org/wiki/Mercator_1569_world_map

Site Calibration

with PROJ and WKT2

Javier Jimenez Shaw
PROJ contributor.

Civil Engineer and Software Developer.

Technical Coordinator of SRS team at Pix4D.

https://github.com/jjimenezshaw/

2

https://github.com/jjimenezshaw/
https://orcid.org/0000-0002-7227-9173

Site calibration with PROJ and WKT2*
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

Purpose of the paper:

There are some proprietary solutions (“black box”, not well documented)
 to the site calibration.

● We offer a solution using an open format and open source libraries.
* No AI was harmed
in the making of this paper.

3

Content

● Introduction
● What is a Site Calibration?

○ Use case
○ Matching points
○ Mathematical concept

● WKT2: self contained CRS
● PROJ helps us

Image by Freepik

4

https://www.freepik.com/free-photo/high-angle-travel-set-with-compass-map_29802543.htm

What is a Local Coordinate Reference System?

● Site CRS
● Local_CS
● Engineering_CRS
● Arbitrary

Cartesian Coordinate Reference System,
non-georeferenced, with arbitrary origin,
orientation and units.

5

Surveying without GNSS

Measuring angles and distances.

Triangle network.

Credit: Tom Cerchiara 6

Surveying with GNSS

7
Credit: Elmar Brokmann

Why do I need Site Calibration?

● Local CRSs are not geo-referenced to any global system.
● GNSS measurements are in global coordinates (official CRSs too).

I would like to use my new GNSS device in my construction site…
How do we use a GNSS in a site system?

Site calibration: “How to” convert from Local CRS to the Well Known CRS (and
vice versa)

8

Use case

● Now I can (quickly) measure with my GPS/RTK and transform to local

coordinates (and vice versa).

● Fly my drone with a GPS, and produce output (point cloud, orthomosaic) in

local coordinates.

9

Matching points (example)

s1

s4

s3

s2

s1 500.0 500.0 21.5

s2 512.5 546.2 22.3

s3 570.1 561.6 19.0

s4 574.6 506.3 26.4

Site coordinates (m)

10

Matching points (example)

s1

s4

s3

s2

s1 500.0 500.0 21.5

s2 512.5 546.2 22.3

s3 570.1 561.6 19.0

s4 574.6 506.3 26.4

g1

g2

g4

g3

g1 42.58624 6.23321 31.5

g2 42.66548 6.31015 32.2

g3 42.96531 6.80235 29.2

g4 43.19942 7.11174 36.4

Site coordinates (m)

Global coordinates (ETRS89 3D)
(lat, long, m)

11
* fictional points

What is missing?

Site CRS (???)

Global CRS (ETRS89 3D)

Site Points (m)

Global Points

Define the Site CRS in a “transformable” way. ✅

(Global CRS can be geographic or projected)

12

Site Calibrated CRS

● Base projected CRS

● Translation

● Rotation

● Scale

13

Always project the geographic CRS

● First we need a projected CRS.

● Create one with low distortion:
○ Centered in the area of interest

○ Conformal (not mandatory, but nice)

● UTM has already some distortion, avoid it.

14

Rotate, scale, translate

l = cRk´ + t

l: local coordinate R: rotation
k´: well know projected coordinate t: translation
c: scale

● Rotate, scale, translate. Can be used with PROJ Affine transformation

15

https://proj.org/operations/transformations/affine.html

Solving it

Calculate the -rotation, scale, translation- that minimizes the residuals.

residual = (Local coord) - (transformed well known coord)

● Umeyama algorithm minimizes the residuals

● Works in n-dimesion (2 or 3 in our case)

● C++ Eigen library: Eigen::umeyama

16

● Accuracy of vertical and horizontal measurements are different
● Curvature of the earth noticed much more in elevations
● Use different points directly in the field
● Allows including a geoid model

Split horizontal and vertical calibration

17
a) 3D b) 2D + 1D

Vertical calibration

Derived Vertical CRS using “vertical offset and slope” deriving conversion

Solved with Least Squares method

Zoff : vertical offset Iφ, Iλ : slopes in latitude and longitude

z, z’ : elevation λ, φ : latitude and longitude

18

What is WKT2?

“Well-known text representation of coordinate
reference systems” (wikipedia)

We want to define the local CRS in an easy
and self contained way.

19

Credit: Elmar Brokmann

WKT2 - projected centered in the area of interest

COMPOUNDCRS["Site Calibrated + Derived vertCRS",
 DERIVEDPROJCRS["Site Calibrated",
 BASEPROJCRS["Transverse Mercator centered in area of interest",
 BASEGEOGCRS["NAD83(2011)", ...], // removed for clarity
 CONVERSION["Transverse Mercator",
 METHOD["Transverse Mercator",
 ID["EPSG",9807]],
 PARAMETER["Latitude of natural origin",41.2305352787143,
 ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],
 PARAMETER["Longitude of natural origin",-73.1815861874286,
 ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],
 PARAMETER["Scale factor at natural origin",1,
 SCALEUNIT["unity",1],ID["EPSG",8805]],
 PARAMETER["False easting",0,
 LENGTHUNIT["metre",1],ID["EPSG",8806]],
 PARAMETER["False northing",0,
 LENGTHUNIT["metre",1],ID["EPSG",8807]]]],
 … 20

WKT2 - DerivingConversion (affine transformation)

 …
 DERIVINGCONVERSION["Affine transformation as PROJ-based",
 METHOD["PROJ-based operation method: +proj=pipeline
 +step +proj=affine +xoff=265262.95287
 +yoff=196619.27389 +s11=1.00003994119
 +s12=0.00548156923529 +s21=-0.00548156923529
 +s22=1.00003994119"]],
 CS[Cartesian,2],
 AXIS["site east (x)",east,
 ORDER[1],
 LENGTHUNIT["metre",1,ID["EPSG",9001]]],
 AXIS["site north (y)",north,
 ORDER[2],
 LENGTHUNIT["metre",1,ID["EPSG",9001]]]],
 …

21

WKT2 - VCRS + Vertical Offset and Slope

 …
 VERTCRS["Derived vertCRS",
 BASEVERTCRS["Ellipsoid (metre)",
 VDATUM["Ellipsoid"]],
 DERIVINGCONVERSION["Conv Vertical Offset and Slope",
 METHOD["Vertical Offset and Slope",
 ID["EPSG",1046]],
 PARAMETER["Ordinate 1 of evaluation point",41.2305352787143,
 ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8617]],
 PARAMETER["Ordinate 2 of evaluation point",-73.1815861874286,
 ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8618]],
 PARAMETER["Vertical Offset",31.0121985701957,
 LENGTHUNIT["metre",1],ID["EPSG",8603]],
 PARAMETER["Inclination in latitude",-6.12572852418232,
 ANGLEUNIT["arc-second",4.84813681109536E-06],ID["EPSG",8730]],
 PARAMETER["Inclination in longitude",-2.67487863214139,
 ANGLEUNIT["arc-second",4.84813681109536E-06],ID["EPSG",8731]],
 PARAMETER["EPSG code for Horizontal CRS",6318,
 ID["EPSG",1037]]],
 CS[vertical,1],AXIS["site up (z)",up,LENGTHUNIT["metre",1,ID["EPSG",9001]]]]] 22

PROJ

● PROJ (C/C++ API) we used to
○ Create initial CRSs

○ Produce a transverse mercator

○ Create Derived Projected, including deriving conversion method

○ Create Derived Vertical

○ Produce WKT2

○ Use output to transform coordinates

We would like to thank Even Rouault.

23

Main ideas

● Usage of WKT2 to define a CRS that encapsulates the site

calibration.

● Self contained, plain text.

● Open source.

● Compound CRS
○ Derived Projected CRS

■ Centered to reduce distortion
■ Affine parametric transformation

○ Derived Vertical CRS
■ Vertical Offset and Slope 24

Thanks for watching!

Javier Jimenez Shaw

https://github.com/jjimenezshaw/

25
© JJS

https://github.com/jjimenezshaw/
https://javier.jimenezshaw.com

